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Dynamics of the Macpherson Strut Motor-Vehicle Suspension 
System in Point and Joint Coordinates 

H a z e m  Al i  At t ia*  

Department of  Mathematics, College of  Science, King Saud University (Al-Qasseem Branch), 
P.O. Box 237, Buraidah 81999, Kingdom of  Saudi Arabia 

In this paper the dynamic analysis of the Macpherson strut motor-vehicle suspension system 

is presented. The equations of motion are formulated using a two-step transformation. Initially, 

the equations of motion are derived for a dynamically equivalent constrained system of particles 

that replaces the rigid bodies by applying Newton's second law. The equations of motion are 

then transformed to a reduced set in terms of the relative joint variables. Use of both Cartesian 

and joint variables produces an efficient set of equations without loss of generality. For open 

chains, this process automatically eliminates all of the non-working constraint forces and leads 

to an efficient solution and integration of the equations of motion. For closed loops, suitable 

joints should be cut and few cut-joints constraint equations should be included for each closed 

chain. The chosen suspension includes open and closed loops with quarter-car model. The 

results of the simulation indicate the simplicity and generality of the dynamic formulation. 
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1. I n t r o d u c t i o n  

Different formulations are used to model and 

simulate the dynamics of machines and mec- 

hanisms. Computer programs are designed to gen- 

erate and integrate the governing equations of 

motion for a system of rigid bodies. Some of these 

programs generate the equations of motion in 

the form of a large set of coupled differential- 

algebraic equations (Orlandea et al., 1978 ; Serna 

et al., 1982; Nikravesh, 1988) while others gen- 

erate a minimal set of differential-algebraic equa- 

tions of motion (Kim and Vanderploeg, 1985; 

1986). 

One formulation which can yield a minimum 

number of differential equations of motion is 
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based upon both point and joint coordinates 

(Attia, 1993, 1996, 1998; Nikravesh and Attia, 

1994; Attia and Mohamed, 1997). The formula- 

tion initially uses the rectangular Cartesian coor- 

dinates of an equivalent constrained system of 

particles to define the configuration of the system. 

The differential equations of motion are derived 

by applying Newton's second law to study the 

translational motion of the particles. The res- 

ulting differential equations of motion together 

with the equations of constraints constitute a 

mixed set of differential-algebraic equations that 

can be solved at every time step to determine the 

global motion of the system. For the purposeof  

computational efficiency, the equations of motion 

derived in the point coordinates are then trans- 

formed to a reduced set of equations in terms of a 

selected set of relative joint coordinates. This 

transformation is done using a velocity transfor- 

mation which relates the Cartesian velocities of 

the particles to the relative joint velocities and 

allows for an efficient solution and integration of 

the equations of motion. 
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This paper briefly describes the point and joint 

coordinate formulation. Then the formulation is 

applied to study the dynamic analysis of the 

MacPherson strut suspension system. The model 

includes a quarter car and the suspension together 

with the necessary elements of the coil springs and 

shock absorbers. The tire is modelled simply by a 

spring-damper element. The results of the simula- 

tions are tested and compared with DAP-3D 

program which is based on the absolute coordi- 

nate formulation (Nikravesh, 1988). Results from 

some selected simulations are presented which 

indicate the simplicity and generality of the dy- 

namic formulation. 

2. Equations of Motion of a System of 
Rigid Bodies 

2.1 Equations of motion in the point coor- 

dinates 

A rigid body can be represented by a dynamic- 

ally equivalent constrained system of constrained 

particles. The system of particles is constructed 

such that it has the same mass, position of the 

centre of mass and inertia components as its cor- 

responding rigid body. Hence, in order to specify 

the position of the rigid body with respect to a 

non-moving coordinate system, it is sufficient to 

specify the position of its equivalent system of 

particles. There is a minimum number of particles 

for such an equivalence to be fulfiled, named as 

primary particles, and extra particles, called sec- 

ondary particles, may be added also to achieve 

additional requirements (Attia, 1993 ; Nikravesh 

and Attia, 1994). According to the geometry and 

the type of motion under consideration, the rigid 

body may be represented by an equivalent system 

of primary particles using the two or three or 

four-primary-particles representations. Between 

these particles, there exist geometric constraints of 

the type, 

( r i - r ~ )  T ( r i - r j )  - diZ,~ = 0  

Such a constraint keeps the distance d;.~ between 

particles i and j on the same rigid body constant. 

The external forces and couples acting on the 

system are known forces either constant such as 

gravitational forces or variable such as spring or 

damper forces. These external forces or couples 

are transformed to an equivalent system of forces 

and distributed over the primary particles. 

For a constrained system, kinematic joints be- 

tween the rigid bodies are imposing kinematic 

constraints on the relative motion between the 

adjacent rigid bodies. These constraints can be 

expressed in the form of algebraic constraints 

between the primary particles (Attia, 1993; 

Nikravesh and Attia, 1994). For example if the 

primary particle i on body k coincides with the 

primary particle j on body l (e.g., a spherical 

joint) then we write a vector constraint equation 

in the form, 

r~-rJ=O 

However, by allowing bodies to share primary 

particles these simple kinematic constraints can be 

automatically eliminated and then reducing the 

total number of primary particles. Consequently, 

the mass of the primary particle, which is shared 

by the two bodies, receives contribution from 

both bodies and also the applied force on this 

particle receives contribution from the forces that 

act on both bodies. 

The equations of motion of the equivalent sys- 

tem of particles are derived by applying Newton' 

s second law to study the motion of the individual 

particles. The translational motion of the particles 

together with the constraints imposed on them 

define the general motion of the rigid body, both 

translational and rotational. The equations of 

motion of the secondary particles, which are 

located at the mid-points of the lines joining the 

primary particles, can be eliminated by expressing 

their unknown accelerations in terms of those of 

the primary particles with the aid of geometric 

constraints (Attia, 1993; Nikravesh and Attia, 

1994). If the whole mechanical system is replaced 

by N primary particles, then the vector of Car- 

tesian coordinates and the corresponding vectors 

of velocities and accelerations each has 3 N com- 

ponents. If the geometric and kinematic con- 

straints contribute to m independent holonomic 

constraints then, the resulting equations of motion 

of the system of N constrained primary particles 
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consist of 3 N ÷ m  differential-algebraic equa- 

tions. 

The constraint equations, both geometric and 

kinematic of the holonomic type, can be put in the 

general form, 

qS(q) = 0  

the first and second time derivatives of the con- 

straints yield respectively to the velocity and ac- 

celeration equations of constraints in the form, 

q~(q) = D ¢ I = 0  

~(q) = D t i -  ~'=0 

where D=O~b/Or is the Jacobian matrix of the 

constraints (m × 3N) and 7 is the right-hand-side 

of the acceleration equations of constraints (m × 

1); 

~=-Dq 
Each particle is being acted upon by a known 

external force and an unknown constraint forces 

associated with the geometric and kinematic 

constraints. The unknown constraint forces can 

be expressed in terms of Lagrange multipliers in 

the form (Nikravesh, 1988), 

fc= -DL~ 

where fc is the vector of unknown constraint 

forces (3N× 1) and A is the vector of Lagrange 

multipliers associated with the geometric and 

kinematic constraints ( rex 1). The final form of 

the equations of motion is given by (Nikravesh 

and Attia, 1994), 

-DT]r"] [g] Ill 
0 ALAA= 

where M is the overall mass matrix (3N X3N), ci 

is the vector of Cartesian accelerations of the 

primary particles (3N× 1) and g is the vector of 

external forces (3N × I) ; g =  [gl, " ' ,  g~] r and 

where g, is the resultant external force acting on 

particle i (3× 1). 

The use of particle dynamics expresses the gen- 

eral motion of the rigid body in terms of the 

translational motion of the particles and results in 

the elimination of the rotational equations of 

motion and the associated rotation matrices and 

leads to a simplified approach. The methodology 

can be applied to either serial or parallel chains. 

The main disadvantage is the large resulting 

number of equations which can be greatly im- 

proved by the transformation to the relative joint 
variables. 

2.2 Equations of motion in the joint coor- 
dinates 

For multibody systems with open kinematic 

loops, Eq. (1) can be converted to a set of dif- 

ferential equations equals the number of degrees 

of freedom of the system using the velocity trans- 

formation approach. In the process of transfor- 

mation, the position of a body is defined with 

respect to its adjacent reference body by relative 

angles or distances. Therefore, the vector of joint 

coordinates and the number of degrees of free- 

dom are determined by the type of joints. If 

the relative configuration of two adjacent bodies 

is defined by relative joint coordinates equal in 

number to the number of relative degrees of 

freedom between the bodies, then a vector of 

relative joint coordinates is defined by 8=[01 ,  

"", 0n]r where n is the number of degrees of 

freedom of the system. The chosen relative joint 

coordinates depend on the type of kinematic 

joints connecting the bodies. The corresponding 

vectors of relative joint velocities and accelera- 

tions can be derived by taking the first and second 

time derivatives of the relative joint coordinates 

and are respectively given by 0=ITS1, "", On] r 

and 0 = [01, " ' ,  0,]  r. The absolute velocities of 

the particles belonging to one body depend on the 

absolute velocities of the preceeding body on the 

chain as well as the relative velocity between the 

two bodies. Such a relative velocity, is the one 

which can be expressed in terms of the relative 

joint velocities at the kinematic joints connecting 

the adjacent bodies. Thus, knowing the absolute 

velocities of the floating base body in a chain and 

the relative joint velocities we can sequentially 

determine the absolute velocities of the coming 

bodies on the chain. Finally, the vector of the 

Cartesian velocities of the particles can be des- 

cribed kinematically in terms of the vector of 

relative joint velocities and such kinematic rela- 

tions are expressed as (Kim and Vanderploeg, 
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1986 ; Attia, 1993 ; Nikravesh and Attia, 1994), 

t i = B 0  (2) 

where matrix B is called the velocity transforma- 

tion matrix which is orthogonal to the Jacobian 

matrix D. Matrix B is derived using the kine- 

matic relations for each joint  type (Nikravesh and 

Attia, 1994). A systematic construction of the 

velocity transformation matrix B for open or 

reduced open loop systems is given in (Kim and 

Vanderploeg, 1986; Attia, 1993; Nikravesh and 

Attia, 1994). The structure of this matrix shows 

that it can be partitioned into submatrices (block 

matrices), which are associated with different 

types of kinematic joints. Then, each joint  type 

has its corresponding block matrix which leads to 

a systematic construction of the matrix B. Substi- 

tution of the time derivative of Eq. (2) in Eq. (l) 

and premultiplication by B v yield 

M O = f  (3) 

where I ~ = B r M B  and f = B T ( g - M B 0 ) .  It 

should be pointed out that the velocity transfor- 

mation matrix B is orthogonal to the Jacobian 

matrix of the constraint equations (Attia, 1993; 

Nikravesh and Attia, 1994), then, the term BTfc 

vanishes, where fc are the constraint forces. There- 

fore, all the geometric and kinematic constraints 

are eliminated through the transformation to joint  

variables. The symmetric linear system of Eq. (3) 

represents the equations of motion for an open 

loop system when the number of selected relative 

joint  coordinates is equal to the number of de- 

grees of freedom. At every instant, knowing the 

external forces and the joint  coordinates and 

velocities, Eq. (3) can be solved for the unknown 

joint  accelerations. 

To derive the equations of motion for systems 

containing closed loops, each closed loop is cut 

at one of the kinematic joints in order to obtain a 
reduced open loop system. For  this reduced sys- 

tem, joint  coordinates are defined as for any open 

loop system. If this system is closed at the cut 

joint  (s), the joint  coordinates will no longer be 
independent. Addit ional  kinematic constraints 

due to cut-joints should be appended to the 

geometric and kinematic constraints associated 

with the open loop constraints. The resulting 

constraint equations for the closed kinematic 

loops may be expressed as 

~'(0) : 0  (4a) 

The time derivative of the constraints are 

~ : C 0 : 0  (4b) 

~ : C 0 + ( ~ 0 = 0  (4c) 

where C is the Jacobian matrix of the cut joints 

constraints as well as the original constraints of 

the open loop system. Then, the equations of 

motion, Eq. (3), are modified for closed loop 

systems as (Attia, 1993; Nikravesh and Attia, 
1994), 

where v is the vector of Lagrange multipliers 

associated with the constraints of Eq. (4). Equa- 

tions (5) represent the equations of motion for a 

multibody system when the number of selected 

joint coordinates is greater than the number of 

degrees of freedom of  the system. At every instant, 

knowing the external forces, the joint  coordinates 

and the joint  velocities, Eq. (5) can be solved for 

the unknown joint accelerations and the cut-joint  

constraints forces. 

The linear system of algebraic Eqs. (3) or (5) 

is solved using the Gaussian elimination tech- 

nique adopted for symmetric matrices. Then, the 

joint  accelerations are integrated twice to deter- 

mine the joint  coordinates and velocities at the 

next time step. 

2.3 Integration of the equations of motion 
The differential equations of motion for open 

loop system, Eq. (3), or for closed loop system, 

Eq. (5), represent a set of non-l inear  ordinary 
differential equations with the time as an inde- 

pendent variable that can be put in the standard 

form, 

y = h ( y ,  t) 

where y and y are vectors that contain the relative 

joint  coordinates, velocities, and accelerations as 

y = [ ~ ]  and y = [ ~ . ]  
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The numerical solution of the equations of mo- 

tion requires a numerical integration process that 

determines the elements of y at every time step. 

The function "h" is evaluated by solving the 

equations of motion for the unknown joint  acc- 

elerations. This numerical process is summarized 

as follows : 

(1) Initially, the joint  coordinates and veloci- 

ties are known, i . e .y .  

(2) Using the vector y, the Cartesian coor- 

dinates and velocities and the matrix B, B, C and 

(~ can be constructed. 

(3) With the knowledge of the known mass 

matrix M and the force vector f, the equations of 

motion for open loop system, Eq. (3), or closed 

loop system, Eq. (5) can be derived. 

(4) Solve the equations of  motion for 8 and v 

using the Gaussian elimination technique adopted 

for symmetric matrices. 

(5) Construct the 3;" vector and return the 

contents to the integration algorithm. 

(6) repeat the previous steps at every time step. 

Gear 's  method (Gear, 1988) for the numerical 

integration of  differential-algebraic equations is 

used to overcome the instability problem resulting 

during the modelling process of  constrained mec- 

hanical systems. The coordinate transformation 

from the joint  space to the Cartesian space is done 

at every time step in order to construct the 

matrices B, B, C, and (~. Use of both Cartesian 

and joint  coordinates produces an efficient set of 

equations without loss of generality. 

3. D y n a m i c  S i m u l a t i o n  o f  t h e  

M a c p h e r s o n  S t r u t  S u s p e n s i o n  

In the past ten years much attention has been 

focused on improving the r ide/handl ing compro- 

mise of the car by using a multi loop suspension 

and steering mechanism. The mul t i - loop structure 
usually gives the possibility to separate the wheel 

bouncing parameters determining ride comfort 
from steering. Figure 1 (a) illustrates the mult i -  

loop MacPherson strut suspension system mo- 

unted on the left side of the vehicle. The system 

has four degrees-of-freedom (DOF) .  The chassis 

has one DOF since it is constrained to move 

vertically upward and downward which can be 

modelled as a translational joint  with axis verti- 

cal. The wheel has one DOF corresponding to the 

Fig. 1 (a) 

rig. ] (b) 

Fig. 1 (e) 

/ /  % 

I 
! 

Q ° : 

1/ 

I t / 

The Macpherson strut suspension system 

D 

F 

i 

The Macpherson strut mechanism indica- 
ting body numbers 

4...~ io 
9~ 

The Macpherson strut with the equivalent 
particles 



1292 Hazem Af t  At t ia  

rolling motion and is analytically modelled as a 

linear translational spring with damping charac- 

teristics. The MacPherson strut suspension mec- 

hanism has two DOF (see Fig. 1 (b)).  According 

to its performance, the mechanism can be separat- 

ed into two independent parts; bouncing mec- 

hanism and steering mechanism. The bouncing 

mechanism is a one DOF four-bar linkage OAED 

with links 1, 2, 3, and 4. The bouncing action 

caused by the rotation of the lower arm (link 2) 

about the axis O102 and the accompanying rela- 

tive sliding motion of the portions of the strut 

(link 3 and 4). The lower portion of the strut is 

the wheel knuckle. The steering mechanism is a 

one DOF four-bar linkage FCBD. The steering 

action caused by the sliding motion of the steering 

rack (link 6), and accompanying motion of the 

tie rod (link 5) causing the rotation of the strut 

about the steering axis AD. Moreover, the rota- 

tion of the tie rod about its axis BC is a passive 

degree of freedom. Joints at A, B, C and D are 

spherical joints, while the coaxial joints at O1 and 

Oz are revolutes forming a compound revolute 

joint. The strut joint at E is a sliding joint with 

compliance. Thus, the two-DOF MacPherson 

strut suspension mechanism consists of six links, 

and four spherical joints, one compound revolute 

joint and two sliding joints. The MacPherson 

strut is being used for front wheel axles of current 

small cars, and can also be used for rear axles. 

The light weight and compact size of the mec- 

hanism are its main advantages. Furthermore, the 

system design allows longer axle springs, and thus 

a soft, long-strike suspension. A suspension 

spring and a shock absorber are included in the 

suspension sub-system. The inertia characteristics 

of the rigid bodies are presented in Table A.l. 

The characteristics of the suspension springs and 

dampers, and the wheel are presented, respective- 

ly, in Tables A.2 and A.3. 

The whole system is replaced by its equivalent 

constrained system of particles. The chassis and 

the knuckle are replaced by the four-primary- 

particles representation. The A-arm is replaced 

by the three-primary-particles representation. 

The strut link 4, the tie rod (link 5) and the 

steering rack (link 6) each is replaced by the two- 

primary-particles representation. The wheel is 

modelled with a system of two-primary-particles 

along its axis and a rotational variable. The 

whole system is represented by a resultant system 

of I I particles. Figure l(c) presents a schematic 

diagram for the mechanical system and the corre- 

sponding equivalent system of particles. Cutting 

the spherical joint at point D and the spherical- 

spherical joint along the tie rod (link 5) result in 

an open loop system that consists of two loops. 

Cut-joint  constraint equations are required to 

locate particles 4 and l0 together and a fourth 

scalar equation is required to fix the distance 

between particles 6 and 1 1 along the tie rod. The 

vector of coordinates constitutes 3 × 1 I Cartesian 

coordinates for the particles and one rotational 

variable for the rolling of the wheel, defined by, 

q =  [rxr, . . .  r t r  05] r 

where r~, ..., rl~ are the global coordinates of the 

particles and 05 is the rolling angle of the wheel. 

The corresponding vectors of Cartesian velocities 

and accelerations are respectively given by, 

The equations of motion in terms of the Cartesian 

coordinates are given by Eq. (3). The overall 

mass matrix is a 34 × 34 constant sparse symmetric 

matrix. 

For the purpose of computational efficiency, 

the equations of motion derived in terms of the 

Cartesian coordinates of the particles are trans- 

formed to the relative joint variables. The vector 

of joint coordinates is defined by 0=[01 ,  05, piT, 

05, 04, 051 r. 01 is the vertical displacement of the 
chassis relative to a fixed coordinate frame, 02 is 

the rotation angle of the A-arm relative to the 

chassis, Pl are the Euler parameters that describe 

the orientation of the knuckle, 05 is the relative 

displacement between the strut links 3 and 4. 04 

measures the sliding motion of link 6 and 05 is the 

rolling angle of the wheel. The corresponding 

vectors of joint velocities and accelerations are 

respectively given by, 



Dynamics o f  the Macpherson Strut Motor- Vehicle Suspension System it? Point and Joint Coordinates 1293 

0 = [ 0 1 ,  02, W r, tgs, 0,, 052 r and 

~bt and o~ are the angular  velocity and accelerat- 

ion of the knuckle respectively. The 34 X 8 veloci- 

ty t ransformation matrix is constructed using the 

kinematic relations for every jo in t  (Attia, 1993 ; 

Nikravesh and Attia, 1994). The details of  the 

derivation of the velocity t ransformation equa- 

tions are given in Appendix  B and consequently 

the velocity t ransformation equat ion takes the 

form, 

- r l l  

r2 I 

r3 I 

r4 I 

rs I 

re I 

r7 [ 

r8 I 

r9 I 

rt0 

1;11 

05] 

at 

Ut 

U1 

Ul 

Ul 

at 

Ul 

Hi 
ul 

ul 

at 

-dsAu2 

-d6,tu2 -d6,5 
--d7,1U2 --d7,5 
-d~,t.2 -d~,, 
-d,.tu2 -d,,~ 
-dlO,1U2 -dlO,  

n3 

U3 

U~ 

01' 

02 
091 

03 

O~ 

Os 

where d~,j is the 3 ×3  skew-symmetric  tensors 

providing the vector product and u~ is the unit  

vector along the axis of the t ranslat ional  jo in t  i• 

The corresponding 34 × 8 B matrix has the form, 

0 

0 

0 

0 

0 -- C~.1U2 

0 --~AU2 

0 -dr ,  lU2 

0 - ~ , t u z  

0 -dgAu2 

0 -- d,0.tu2 
0 

-c~,5 

--C~,5 

--&.5 ti3 ( 02U2 + &l) 
--  C19,5 
- cix0.~ t~3(Au2+ ~t) 

0 

0 

The cu t - jo in t  constraint  equat ions are expressed 

in terms of the Cartesian coordinates of the 

particles. For  particles 4 and 10, the constraint  

equat ion has the form, 

r a - - r l 0 = 0  

For particles 6 and l t, the distance constraint  

has the form, 

(r6-r l~ )  r ( r e - r l t )  - d ~ l  = 0  

where a~al is the distance between particles 6 

and I I. The first and second time derivatives of 

the cut - jo in ts  constraint  equat ions lead to the 

corresponding velocity and acceleration equa- 

tions respectively, 

1; 4-1~10=0 and (rG-r,) r (1;~-t11) =0 

i~4-i~t0=0 and (r0-rlt) r (i~6_i, tl) = _ (t6-ttl) r (1;6-t.) 

The 4 x 8  matrix C, defined in Eq. (4), can be 

written in the following closed form, 

[0 0 -"io, iU~ -"to,s u3 0 00] 
C~ T ~ T - -d6,uds.6 - dtTt,su4 -d6.nd~.lu2 0 

The kinematic constraints due to some common 

types of kinematic joints  (e.g. revolute and sphe- 

rical joints) can be automatical ly el iminated by 

properly locating the equivalent  particles• The 

remaining kinematic constraints along with the 

geometric constraints are, in general, either l inear 

or quadrat ic  in the Cartesian coordinates of the 

particles• Therefore, the coefficients of their Jaco- 

b ian  matrix are constants or l inear in the rec- 

tangular  Cartesian coordinates. Where as in the 

formulat ion based on the relative coordinates,  the 

constraint  equat ions are derived based on loop 

closure equat ions which have the disadvantage 

that they do not directly determine the posit ions 

of the links and points of interest which makes 

the establishment of the dynamic problem more 

difficult. Also, the resulting constraint  equat ions 

are highly nonl inear  and conta in  complex circu- 

lar functions. The absence of these circular func- 

tions in the point coordinate formulat ion leads to 

faster convergence and better accuracy. Further-  

more, preprocessing the mechanism by the topo- 

logical graph theory is not necessary as it would 

be the case with loop constraints. The addi t ional  

manual  work of the local axes attachment and 

local coordinates evaluat ion in the absolute coor- 

dinate formulat ion are not required which leads 

to fully computerized analysis. In addit ion,  the 

number  of constraint  equat ions is much smaller 
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than the case of the absolute coordinate for- 

mulation which accounts for a reduction in the 

computational time and memory storage. 

The resulting equations of motion, as given by 

Eq. (5), represent a 12× 12 symmetric system of 

equations that can be solved for the unknown 

joint accelerations and the cut joints constraint 

forces. For the absolute coordinate formulation, 

a system of 30-t-27 differential equations of mo- 

tion plus algebraic equations of constraints is 

Table 1 Time (s) variation of the vertical displace- 
ment (m) of the chassis using the suggested 
method and DAP-3D 

Simulation method t=0.5 t---- 1 t=3 

Suggested algorithm --0.1786 --0.1571 --0.1536 
DAP-3D --0.1783 --0.1569 --0.1524 

a .os 

,9 o 

| 

~> 

Fig. 2 

r i I 

T £ m e  (s) 

The time (s) variation of the vertical dis- 
placement of the chassis (m) 

d 

Z ° 
o 

o 

Time (s) 

Fig. 3 The time (s) variation of the vertical dis- 
placement of the chassis (m/s 2) 

constructed. Thus a resulting system of 57 dif- 

ferential-algebraic equations should be solved at 

every time step to determine the unknown acc- 

elerations and reac.tion forces. This reduction in 

the number of differential equations of motion 

and in turn the number of integrable variables is 

considered as an advantage for the point and joint 

coordinate formulation. 

3.1 Results  of  the simulation 

The above equations of motion, Eq. (5), are 

used to simulate the free response of the system 

from some initial condition where the initial Car- 

tesian coordinates of the particles are given in 

Table A.4 in Appendix A. Figures 2 and 3 present 

the time variations of the vertical displacement 

and acceleration of the chassis respectively. The 

main chassis is accelerated downward due to the 

gravitational forces. Then, it undergoes a damped 

oscillatory motion controlled by the spring-dam- 

per-actuator elements forces and the wheels com- 

pression forces up to the steady state. The veri- 

fication of the results is done by comparison with 

DAP-3D program which is based upon the abso- 

lute coordinates (Nikravesh and Attia, 1994). 

The comparison shows a complete agreement and 

coincidence in plotting for the results of the two 

simulations since the differences are not pro- 

nounced within the accuracy of the plotting. Also, 

it is more appropriate to present the results in 

tabular form. Table 1 compares the time variation 

of the vertical displacement of the chassis using 

the simulation results of the suggested algorithm 

and DAP-3D and ensures the validation of the 

results obtained here. 

4. Conclusions 

The application of a multibody dynamic for- 

mulation which uses both point and joint coor- 

dinates to study the dynamic analysis of the Mac- 

pherson strut suspension system is demonstrated 

in this paper. The Macpherson strut suspension is 

replaced by an equivalent system of 11 particles 

which results in a 34×34 constant sparse sym- 

metric mass matrix. The equations of motion in 

terms of the Cartesian coordinates of the particles 
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are transformed to joint  variables by defining 

suitable joint  coordinates and using the velocity 

transformation matrix. The resulting differential 

equations in terms of  the joint  variables are equal 

to the number of degrees of freedom of the whole 

system plus the number of cut joints constraints. 

Use of both the Cartesian and relative joint  

variables produces an efficient set of equations 

without loss of generality. The results of the si- 

mulations are tested and compared with D A P -  

3D program. The chosen example incorporates 

open and closed chains with the common types of 

kinematic joints. The simulations indicate the 

simplicity and generality of the formulation. 
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Appendix A 

Table A.I Description of the rigid bodies 

Body Mass inertia ( Kg. m 2) 
Description (Kg) ~ ,  rF/, ~'~', r/~', e~., ~z 2 

Main chassis 
Lower arm 
Steering rod 
Tie rod 
Wheel 

456.0 570.0, 2320.0, 2715.0, 0.0, 0.0, 0.0 
4.6 0.1, 0.1, 0.1, 0.0, 0.0, 0.0 
12.1 0.25, 0.25, 0.25, 0.0, 0.0, 0.0 
1.0 0.1, 0.1, 0.1, 0.0, 0.0, 0.0 

25.0 0.1, 0.1, 0.1, 0.0, 0.0, 0.0 

Table A.2 The characteristics of the suspension 
springs and dampers 

Connected K D lo 
No. 

bodies (N/m) (Nsec/m) (m) 

1 (1, 2) 4.22E+04 0.0E+00 0.4815 
2 (1, 2) 0.0E +00 2.7E+03 0.0 
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Table A.3 The characteristics of the wheels 

Radius 0.35 m 
stiffness 2.00E +05 N/m 
Damping Coefficient 8.0E + 4 Nsee/m 

Table A.4 Initial cartesian coordinates (mm) of the 
particles 

(xt, Yb z,)= (270, -5, -10) (XT, YT, z7)= (452, -320, 20) 
(X2, Y2, Z2)=(540, --10, --20) (Xs, Y8, Z~)=(452, --410, 20) 
(X3, Y3, 23)= (570, 60, 90) (X0, Y9, Zo)= (456, --250, 246) 
(X4, Y4, 24) = (460, --180, 470) (X~o, Ylo, Zxo) = (460, --i80, 470) 
(X~, Ys, Z~)= (450, --330, --40) (Xu, YH, Zu)= (470, 60, 90) 
(xs, y6, z~)= (560, -300, 60) 

Appendix B 

According to the chosen relative joint  veloci- 
ties, the linear velocities of  the assigned points can 
be determined as follows : the velocity of  point i 
( i =  1, "-, 4) on the chassis is given as, 

1;i = 01Ul (B 1 ) 

The angular velocity of  the A - a r m  is given by 

(~1 = 02U2 (B2) 

Then, the velocity of  point 5 is given as, 

1";5:1;1 ~- (~lXds,l :  ~ lU l -  ~2ds,lU2 (S3) 

The angular velocity of  the Knuckle is given by, 

~2=  091+ 091 (B4) 

The velocity of point j (j-----6, -",  8) on the 
Knuckle is given as, 

r~=1;s+ cbzXdj, s =  0 1 u l -  02&,lu2-d~,~w, (Bs) 

The velocity of  point k ( k = 9 ,  10) on the strut 
link is given as, 

l~h =1;s + ~ 2 X d  h,s (B6) 
= Osu3- 01Ul- 0zdk,,u2--da, swl + t~3u3 

The velocity of  point 1 1 on the tie rod is given by, 

1;11 =1;3+ 04U4 = 01Ul-~ 04U4 (BT) 




